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The spatial correlation function is calculated for thermal fluctuations of the liquid crystal director
field in the core of an optical fiber composed of a main chain liquid crystal polymer in the smectic-C
phase. Due to steric constraints on the liquid crystal polymer, the smectic layers orient perpendicular
to the fiber axis, the liquid crystal director lies flat against the core-cladding interface, and a line
disclination appears along the fiber axis. The analysis is based on a Landau—-de Gennes expression
for free energy, which includes ordinary smectic-C elastic terms as well as terms added to model the
disclination. The correlation function is used to relate the scattering distribution and attenuation
of guided light to the elastic constants of the liquid crystal polymer.

PACS number(s): 61.30.Cz, 42.81.Dp, 42.81.Wg, 61.30.Jf

I. INTRODUCTION

The elastic constants and dynamics of liquid crystal
polymers are of fundamental interest. Omne standard
probe of these properties, light scattering, is best suited
for well-aligned samples, and such samples are difficult to
obtain with liquid crystal polymers. Fortunately, a main
chain polymer material can be well aligned by drawing
(stretching) it into a fiber [1], but, unfortunately, de-
forming the material this way complicates the interpre-
tation of light scattering measurements. In this paper
we discuss a common fiber geometry, namely, that of an
optical fiber—with a main chain smectic-C (denoted Sm-
C) liquid crystal polymer (LCP) core surrounded by an
isotropic cladding—and show how the LCP elastic con-
stants are related to the scattering distribution from light
guided by the fiber.

Optical fibers of this sort may be strongly attenua-
ting—since light scatters from fluctuations in the dielec-
tric tensor caused by thermal fluctuations in the liquid
crystal director field—and this could potentially prevent
guided-light scattering measurements from being practi-
cal [2-6]. Hence, we also estimate the attenuation of such
fibers. Since there has been recent interest in the con-
struction of optical fibers with liquid crystal cores [2,7],
our calculations may soon have experimental relevance.

The fiber geometry is illustrated in Fig. 1. We assume
the LCP mesogens lie flat against the core-cladding in-
terface, with the smectic layers oriented perpendicular to
the fiber axis and a line disclination along the fiber axis.
(The motivation for these assumptions is given at the
beginning of the next section.) Our goal is to calculate
the spatial correlation function for thermal fluctuations
of the liquid crystal director field, and from this estimate
the scattering distribution and attenuation of the fiber.

The paper is organized as follows. In Sec. II we write a
Landau—de Gennes free energy of the fiber core, minimize
to find the equilibrium configuration, and calculate the
normal modes of thermal fluctuations about equilibrium.
In Sec. III we use the normal mode expansion to calcu-
late the spatial correlation function. In Sec. IV we use
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FIG. 1. (a) Fiber cross section containing the fiber axis.
The disclination runs along the fiber axis, perpendicular to
the smectic layers. Arrows depict the p field. (b) Fiber cross
section perpendicular to the fiber axis. Arrows depict the p
field. (c) Relationship between the layer normal 2, director
i, p, and c.
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the correlation function and classical scattering theory
to calculate the scattering distribution and attenuation
of the fiber. In Sec. V we discuss our results.

II. FREE ENERGY

Consider an optical fiber with a core of radius R and
length L — oo, and let the axis of the fiber coincide
with the z axis. Adopt standard cylindrical coordinates
(p,#,2). The core is composed of main chain LCP in
the Sm-C phase, and we assume the smectic layers are
ideal (i.e., rigid and uniformly spaced) and oriented per-
pendicular to Z (see Fig. 1). Let & be the liquid crystal
director, which tilts slightly away from %, and let ¢ be the
component of fi parallel to the layers. Define the vector
P = % X ¢, which is parallel to the layers and perpen-
dicular to both fi and c¢. The vector field p (which is
everywhere in the zy plane) will serve as the Sm-C order
parameter.

The motivation for adopting this geometry [i.e., with
p(r) radial and a 27 disclination [8-11] along the fiber
axis] is as follows. We assume the core and cladding
materials have been chosen so that the surface tension
at the core-cladding interface is minimized when p is
normal to the interface. This is known to be possible
for low-molecular-weight Sm-C' liquid crystals. Since the
energy cost of the disclination grows slowly (logarithmi-
cally) with the radius of the fiber core while the core-
cladding interface energy grows linearly, it is expected
that, at least for large radii (as observed experimentally
in a physically similar situation [12]), the interface energy
will dictate the orientation of p at the fiber surface.

It has been shown that, due to steric constraints [13],
surfaces containing the director of a main chain nematic
liquid crystal are likely to have significantly lower free
surface tension than other surfaces. Similar behavior is
expected for main chain Sm-C liquid crystals, so that at
least one direction perpendicular to the order parameter
P (such as fi or c) is expected to lie in a low-energy sur-
face. It is conceivable that both directions perpendicular
to p should be expected to lie in a low-energy surface,
which would induce p to be perpendicular to the surface.
These considerations are consistent with our assumption
that p is normal to the core-cladding interface, and sug-
gest that the choice of the core and cladding materials
may not be critical.

Write the free energy of the fiber core as [14,15]

_ K1 “ 2 K2 8p 2
F—/dr{‘a‘(z'vxl’) +7(az )
K
+"23(V'P)2—AP2+BP4},

where the Ks are elastic constants with units of force
(we neglect the K4 term, which is typically small), A
and B are elastic constants associated with the Sm-C
tilt angle, and p(r) is allowed to vary in magnitude as
well as orientation. The stability of the Sm-C structure
imposes the constraints K;, K5, K3 > 0, and, in a Sm-

C LCP, one expects K, ~ K3 and the ratio K;/K» to
be of the order of the degree of polymerization [16-20].
Here, to simplify the analysis, we let K = K3 = K. In
the neighborhood of the disclination p — 0, otherwise
the gradient terms diverge. Far from the disclination the
gradient terms vanish and

-i = sinf ,

__)
P 2B

where 6 is the value of the Sm-C tilt angle in bulk ma-
terial (typically zero to 30°). Let

P(r) = po(p)  + P1(r), (2)

where the first term is the equilibrium (zero temperature)
solution and the second term represents fluctuations from
equilibrium. Grouping terms in the free energy that are
of zeroth, first, and second order in p; give

K 2
Fo=/dr{5(?;)—°+;?6) —Ap§+Bp8}, (3)

Flz/dr{K(%H%)V'pl (4)

—(2Apo — 4Bp3) p - Pl} )

- K, 2, K (001
Fg-—/dr{7(z-pr1) +2(82 5)

K
+~2—(V-p1)2—Ap§

pz
+4Bp} (31 + (b-pl)z) } :

where F' = Fo+ Fy + F, +O(p?) , the region of integration

is the fiber core, and the primes denote differentiation.
In equilibrium F; = 0, and this will determine the form

of the equilibrium solution po(p). Integrating F; by parts

gives
!
Flz/dr{—K(ngr%—%) (6)

—2Apo + 4Bp8} P P1,

where we neglect surface terms. To satisfy F; = 0 the
factor in braces in the integrand must be zero. With the
change of variables u = p/Rg4, v(u) = po/Poo We find

" +uwv’ + (2 (1 - v’ )u? —1v =0, (7)

where Ry = K'/2471/2 is a length that characterizes the
radius of the disclination, and

Poo = \/g (8)

is the asymptotic (bulk) value of p. As u — 0 the so-
lution that remains finite is v(u) ~ u, and as u — oo
we require v(u) — 1. The solution for these boundary
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conditions was calculated numerically (see Fig. 2). The
approximation

v(u) = (1 — 0.175sechu) tanhu (9)

satisfies the boundary conditions and reproduces the
numerical solution to within 2% for all u. Typically
R ~ 107 m and Ry ~ 1078 m, so the volume of the
disclination is minute compared to the volume of the fiber
core. Outside the disclination v rapidly approaches unity.

Now that we have determined the equilibrium config-
uration, we turn our attention to thermal fluctuations
about equilibrium. To lowest nonvanishing order, the
change in the free energy due to the fluctuation p¢(r) is
F5. We will transform the expression for F; into a sum-
mation over normal modes, and expand p;i(r) in terms
of these normal modes—this will simplify the correlation
function calculation in Sec. III. Since F) is second order
in p; we can, in principle, write it in the form

dr
F, = KRd/ 73 piMp,, (10)
d

where M is a 2 X 2 matrix differential operator (with di-
mensionless elements Mye, Mgy, Mys, and M,,) and {
denotes the Hermitian conjugate. The eigenfunctions of
M are the normal modes we seek. Since the fiber is cylin-
drically symmetric, M commutes with the infinitesimal
translation and rotation generators

.0 .0 (0 -1
——7,—8—2, —13—¢+’l(1 0)
The eigenfunctions of the translation generator are e
(times an arbitrary function of p and ¢), where k, =
2m¢/L, £ is an integer (the axial quantum number), L
is the length of the fiber, and we have adopted periodic
boundary conditions in the z direction. The eigenfunc-

tions of the rotation generator are e™%p (times an arbi-
trary function of p and z) and e'™%¢ (times an arbitrary

tkyz
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function of p and z), where m is an integer (the azimuthal
quantum number). So we may write the eigenfunctions
of M in the form

A= [f(u)b-}—ig(u) &} im gikez (11)

where f and g give the radial dependence of the radial
and azimuthal components of a mode. The eigenvalue
equation MA = MA leads to the coupled ordinary dif-
ferential equations [obtained by varying [ drAf(M —A)A
with respect to f and g]

W +uf + W€ +2-60?) — (ym? +1)] f (12)
+ (v = D)mug’ + (v + 1)mg =0,

2 2
u?’g" +ug' + [%(8+2 —20%) — (1";— + 1)] g (13)

+<1—1)muf'+(l+1>mf20’
Y v

where
A= 3[€ + (keRa)?], (14)

and v = K, /K.

Both A and £ must be non-negative, since they are as-
sociated with fluctuations away from equilibrium. The
dominant fluctuation modes are those which are most
easily excited, i.e., with 0 < £ < 1. When u > 1 the
differential equations decouple, and the dominant modes
have f ~ exp(—2u) (the boundary condition p; — 0 as
u — R/R4; demands the decaying exponential). There-
fore, f is negligible except in the vicinity of the disclina-
tion, and it is reasonable to consider an approximation
where we neglect f entirely. Then the coupled differential
equations (12) and (13) simplify to

f=0, (15)
u? m?

uzg”+ug'+ [*—g‘—‘ (T+1>]g=0, (16)

v
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FIG. 2. Plot of disclination profile v(u).
Line was obtained by numerical integration
of Eq. (7), diamonds represent Eq. (9).
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where we have neglected the quantity 2 — 2v2, which is
also negligible except in the vicinity of the disclination.
Equation (16) is Bessel’s equation, and the solution with
g(0) finite and g(R/Rg) =0 is

Ra Jw(€mnu)

gmn(u) = \/ifm P (17)
where
1/2
m = (1 + m72) s (18)
2
gmn = '76127"; (%) ) (19)

n is a positive integer (the radial quantum number), £z,
is the nth root of the Bessel function of order m, and we
have adopted the normalization

1=/duu(f2+g2). (20)
The corresponding normal modes

Atmn = igmn(u) ™ ekt (21)

represent fluctuations that have only an azimuthal com-
ponent. Radial fluctuations are either confined to the
neighborhood of the disclination or have large eigenval-
ues, and are neglected in this approximation.

The normal mode expansions for the real quantities p;
and F, are

P1 = Z iAEmnAlmn ) (22)
fmn
and
Fy =mKLY |l [Emn + (keRD)?] . (23)
fmn

where Ay ., , = A® —m,n aT€ the expansion coefficients,
£ and m are summed over all integers, and n is summed
over positive integers. These are the normal mode ex-
pansions we set out to find.

III. CORRELATION FUNCTION

Since our ultimate goal is to calculate the scattering
and attenuation of the fiber, we need to relate thermal
fluctuations to fluctuations in the dielectric tensor, which
cause scattering. The Sm-C director may be written

ﬁzpyi—pa:y+iv (24)
where we assume p < 1 (i.e., the Sm-C tilt angle is
small) and neglect terms of order p2. The dielectric ten-
sor is [21-23]

€ij = ELJi,- + €qaninj , (25)

where €| and ¢ are the dielectric constants parallel and

perpendicular to the director, and €, = ¢ — £,. To first
order in p; we find

0 0 ply
e = Ea 0 0 —Piz ) (26)
D1y —Piz 0

where e = € — g¢ and g¢ is the dielectric tensor at zero
temperature.

When calculating the light scattering in Sec. IV we will
need the spatial correlation function

S(r,x') = (¥ (r) ¥(r'))
_ f Dd’ e~ F2/T 1/]*(1,) 1/)(1,/)

[Dye BT (27)
where
P(r) = €ap1y(r)
= —V2¢4(Ra/R) cose
X 3 Ay LAEmnt) €70 0 (28)

Jﬁl+ 1(517111) ’

fmn

() denotes a thermal average, T is temperature (in energy
units), and the functional integrals are to be evaluated
by varying the real and imaginary parts of Ay, from

—00 to +oo subject to the constraint Agm,n = A%, _,, -

Substituting from (19), (23), and (28), and evaluating the
functional integrals, then taking the limit L — oo, gives

Jm({ﬁmp/R) Jm(fﬁmﬁ’/R)
X e T ()
x cos[m(¢ — ¢')] e~ VTmnlz=="l/R  (2g)

Because of the exponential factor, if v is large, correla-
tions are confined to thin transverse sections of the fiber.
(Recall that v = K;/K is of the order of the degree of
polymerization.)

IV. SCATTERING AND ATTENUATION

In this section we estimate the scattering distribu-
tion and attenuation of an optical fiber with a Sm-C
LCP core. We make several assumptions to simplify the
analysis. First, we assume the Sm-C tilt angle is small
(6o < 1), so that the optical axis of the birefringent core
is along z, and we assume the refractive indices of the

_1/2 o 1/2 .
core (n) = g/ nL =¢ ) are spatially homogeneous.
Such fibers are known as step-indez fibers. Second, we as-
sume the birefringence is small (|ea| < 1, |n) —n1| < 1).
Third, we assume the cladding has an isotropic refractive
index n, that it fills all space outside the core, and that
it has negligible attenuation. Fourth, we assume the re-
fractive indices of the core and cladding are nearly the
same (0 < n; — ng < ng). Fibers that satisfy this
condition are said to be weakly guiding. Finally, we re-
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strict our attention to the lowest-order linearly polarized
guided mode (LPg;), which has no azimuthal variation
and no radial nodes. Fibers designed to support only this
mode are said to be single mode. A weakly guiding fiber
is single mode if W < 2.405, where

W =kR4/n% —n?, (30)

and k is the vacuum wave number of the light [24]. Typi-
cal communication fibers are step index, weakly guiding,
and single mode.

Our first task is to write down the electric field for the
guided light propagating in the fiber core. The electric
field propagating within the core of a step-index, weakly
guiding, single-mode fiber is [24,25]

Eo(r) = XE Jo(ép/R) €07 (31)
where

gw) = LIV (32)
+ (4 + W4)1 /4

E is the on-axis field amplitude, kg = n, k is the prop-
agation wave number, and the time dependence e~*? is
understood. The attenuation of light propagating along
a fiber with cylindrical symmetry cannot depend on its
direction of polarization, so there is no loss of generality
in assuming that Eg is polarized along %.

Now that we know the guided field Eq(r) and the cor-
relation function S(r,r’) within the core, we are in a
position to estimate the attenuation. We will do the
calculation in two different ways. The first approach is
simple and physically transparent, but involves the (ap-
parently severe) approximation that all three refractive
indices (n), n., and n.) are identical. We refer to this
calculation as the zeroth-order approximation. The sec-
ond approach only requires that the core birefringence
and core-cladding refractive index differences are small.
We refer to this calculation as the first-order approxima-
tion.

A. Zeroth-order approximation

In this section we neglect core birefringence and core-
cladding refractive index differences entirely, i.e., we take

N =N =ng=n. (33)

We view this as a zeroth-order approximation. The cal-
culation is based on dipole scattering in the far-field
limit [26].

The induced electric polarization in the core due to the
guided light is [23]

p(r) = {91 Boe). (34)

where the quantity in braces is the electric susceptibil-
ity tensor, and we adopt Gaussian units. The induced
polarization at r radiates an electromagnetic field. The
radiated electric field at r’ per unit volume of induced
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polarization at r is [23]

_ k%etro® {1 —88}-P(r)
s

; (35)

E(r,r')

where s = r’ —r, and the tensor in braces projects out the
component of P orthogonal to s. The scattered electric
field E,(r') is obtained by integrating all the contribu-
tions E(r,r’) over the fiber core:

E,(r') = /dr E(r,r'). (36)

To evaluate radiative losses, it is sufficient to calculate E,
in the far-field limit (s — oo), with the approximations

iKo 8 eiﬂgf‘"(l"—l‘)

o . (37)

7',

e

P

R ®»

s

We also replace € — 1 with e, since only fluctuations in
the susceptibility contribute to scattering. Then

E cosf, e*"0® a(8) &
~

E(s) , (38)
s
where
k2 . sz
o) = 3 [ drv() Jo(ep/R) e ED, (39)
€ = —X cosf, cospp, — ¥ cosl, sing, + Z sinb, , (40)

(r) is given by (28), and 6, and ¢, are the polar and
azimuthal angles of 8. Far from the fiber core, E,(s) is a
plane wave radiating along § and polarized along é&.

The total scattered power is [26]

P, = ;—:/dﬂs 5 (|Ed(s)]?) (41)
= Cgf /dﬂ3 sin26, <|a(§)|2> ,

where

(la(®)) =R%/dr/dr,s(r’r,)
xJo(€p/R) Jo(£p'/R) pino(E—8) (r'~r) ,

S(r,r’) is given by (29), and dQ2, = sinf, df, d¢, is the
differential solid angle associated with §. The integra-
tions over z, 2/, ¢,, ¢, and ¢' can be done analytically,
giving

e2TE%cnL(kR)* & . 3
Py = o ; L df, sin®0, (42)

X {Aj,-m(l‘ioR sinf,, &) + A, (ko R sinf,, E)}

X Qnn (1 — cosby)

where

VENUONIES (

fol dz x Jymiq|(vE) Jo(€) I (Emn) :
Jmt1(&mn) '
1

Qo () = g8 a0}
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The way scattering depends on the polar angle 6, is ev-
ident from the 6, integrand: the factor sin®0, strongly
suppresses grazing-angle scattering, while the factor
Qmn(1 — cosf,)—which stems from the integrations over
z and z'—slightly enhances it. The integers m and n are
the azimuthal and radial quantum numbers, and each
term of the double summation indicates the extent to
which the corresponding scattering mode is excited. The
quantity Am is the z component of the angular momen-
tum of photons scattered into azimuthal mode m.

The remaining sums and integrals are analytically in-
tractable;, and numerical evaluation is complicated by
their dependence on several parameters (v, &, and xoR).
To simplify matters, assume the degree of polymerization
is large, so that v > 1. Then m ~ 1 and Q,,, =~ -151—112'
Also, for a single-mode fiber, Jo(€z) ~ 1 over the interval
0 <z <1,and J;(§{) ~ 0. With these approximations,
the expression for the total scattered power becomes

_ 4e2TL(kR)*

s =~ 7|"7KR2 B(K]OR) Pco 3 (43)
where
cnE?R?
Peo =~ 5

is the light power carried in the core [24], and

/2

B(rkoR) =Y | / dé, sin®6,
mn 0

§ fol dx x J)m (ko R sin, ) J1 (§1n) :
Eln J2(£1n) '

The function B(z) was evaluated numerically, and is plot-
ted in Fig. 3.
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The 1/e attenuation length of the fiber is

P\t TR2NK Poo\
- (5) ()"

= 42T B(roR) (kR)2 \ P
where P is the total (core plus cladding) power carried
in the fiber. This is the zeroth-order approximation for
the fiber attenuation.

B. First-order approximation

In this section we again calculate the fiber scattering
distribution and attenuation, assuming the core birefrin-
gence and core-cladding refractive index differences are
small but non-zero. We regard this as a first-order ap-
proximation. We use time-dependent perturbation the-
ory in its most familiar form—the golden rule of quantum
mechanics [27]—and, when convenient, borrow notation
and terminology from quantum mechanics (bra-ket no-
tation, the word “wave function,” etc.). However, our
calculation is, in truth, classical—Planck’s constant does
not appear in the final results.

Let |Eo) represent the (unnormalized) wave function
of a photon in the LPy; bound (guided) mode. A photon
that scatters out of the fiber can be thought of as making
a transition from the bound mode to an unbound mode.
Let |E,) represent the (unnormalized) wave function of
a photon in an unbound (scattered) mode. Then the
number of photons per unit time per unit scattering angle
scattered from the bound mode into an unbound mode
with scattering angle 6, is given by the golden rule [27]:

a2 2
d_a,("s) = ?ZQ

where 7 is Planck’s constant, w is the angular frequency

(I(E;s | w 62| Eo)|?)
<E3|Ds>(EO|D0> ’

(45)

0.01 T T T

B(x)

FIG. 3. Plot of scattering function B(z).
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of the light, Do and D; are electric displacement vectors,
G represents the density of final states (i.e., the number of
final states per unit energy per unit scattering angle), and
the summation is over all unbound modes with scattering
angle 6, that conserve energy (i.e., with vacuum wave
number k). The inner product (E,|fw éc|Eq) represents
the integral

/drﬁwE:(r) - e - Eo(r),

and (E4|D,) and (Eo|Dg) are defined analogously. The
quantity Aw de is regarded as the perturbation that cou-
ples bound and unbound modes. The total scattered
power is then

.- (Do) o

e (|(Ea|6¢|Eo) %)
/dezg (E.D.))

where c is the vacuum speed of light, and the quantity in
braces is the total energy [26] in the bound mode.

The bound mode |Eg) is given (within the core) by
(31). Unbound modes are discussed in Appendix A. Each
component of |E,) has the functional form

h(p) eim,,q& einz ,

where m, (an integer) is the azimuthal quantum num-
ber, kK = nqk cosé, is the propagation wave number, and
the radial functions h(p) differ in the core and cladding,
and from component to component. An unbound mode
is fully specified by the three parameters k, 0,, and m;.
Note that k is constrained by energy conservation to be
the same for the scattered and guided light, and that the
0s; dependence in the expression for P, is explicitly ex-
hibited, so that the summation over final states amounts
to a summation over all integers m,.

In order to calculate the density of states G and the
normalization integral (E ;|D,), it is convenient to in-
troduce “box normalization,” i.e., to imagine the fiber
concentrically enclosed in a cylindrical universe of (arbi-
trarily large) radius Ry,. In the two-dimensional box of
length L and width R.,, the number of states per unit
scattering angle in the interval 6k at k is

LRoon?k Sk
(2m)?

The energy associated with 8k is fic 8k, so the number of
states per unit energy per unit scattering angle is

LR n%k

9= amzhe

(47)
The calculation of (E,|D,) is outlined in Appendix A.
If the core birefringence is small and the fiber is weakly
guiding, then

QLRoonclEf

E;|D,) =
(Ee[Ds) k sin®0,

; (48)
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where E, characterizes the strength of the scattered field.
(The quantity E, will not appear in our final results, and
could be set equal to one—as is done in Appendix A.
Here we retain E, so that the dimensional consistency
of our equations is manifest.) The core constitutes only
an infinitesimal portion of the box, and this is why the
refractive indices of the core do not appear in (47) and
(48). Equation (46) for the total scattered power can
now be written as

cnqk?

_ cnak” " in®6, %).
s [ 0. sin S BB (49

8

The quantity de is zero outside the core, and the prod-
uct é¢ - Eg has only a z component. So only the z com-
ponent of E, within the core is required to evaluate (49).
From Appendix A,

2 -E,(r) = E, Jn,(nUp/R) ™% i"* | (50)

where 17 = n)/n, is a birefringence parameter, and

U= Ry/n2k? — k2. (51)

Then (31) and (50) imply

S (B, 86| Eo) ?) = EzEfZ/dr/dr’ S(r,r)

xJo(¢p/R) Jo(£p'/R)
XJm, (nUp/R) Jm,(nUp'/R)
Xeim"(d)_d)’) ei(n—no)(z—z') , (52)

where S(r,r’) is given by (29), and the integration is over
the fiber core. The integrations over z, 2/, ¢, and ¢’ can
be done analytically, giving

e2TE?cnqL(kR)* & . 3
P, = e ; /0 dé, sin®6
x[Afn (U, €) + AL, (nU,€)]
Tl
an 8 b
X ( n ) (53)
where A (v,€) and Q,,,(v) are defined in (42). To

lowest order in n; —n and ny — ng,

n;, —n n —n
I + =+ L cot?6, ) .
ny nyL

nU =~ ko R sinf, (1 —
(54)

This first-order result for P, is to be compared with the
zeroth-order result (42). In the limit of no birefringence
and no core-cladding refractive index differences, the two
expressions are identical. If n; —n. > 0, then the cot26,
term in (54) diverges as 6, — 0, which drives the A%
terms to zero. So grazing-angle scattering is suppressed
even more strongly than sin®6,. This appears to be the
most pronounced difference between the first-order and
zeroth-order results.
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We emphasize that (53) is not a true first-order ap-
proximation in the small quantities n —n) and n; —ng.
There are two reasons. The first is the way we handled
the normalization factor (E,|D,). In going from (A19)
to (A20) we made a zeroth-order approximation, neglect-
ing the birefringence and core-cladding refractive index
differences entirely. A true first-order treatment would
introduce additional factors into the expression for P,—
factors that depend on 6, and m, and may have first-
order deviations from unity. Such a treatment is difficult
due to the complexity of Eqs. (A10). This complexity is
due to interference patterns in the scattered fields, which,
from the point of view of ray optics, stem from multiple
reflections from the core-cladding interface. The second
reason the approximation is not truly first order is that
we discarded the ITE modes (incident transverse elec-
tric; see Appendix A). One could calculate a separate
P, for the ITE modes, and it may contain first-order
terms. In the overall spirit of the calculation (recall that
we have already assumed K ~ K; ~ K3 and 6y < 1),
we retained only the first-order terms that were simplest
to treat—those which stem from the interaction of the
bound and ITM (incident transverse magnetic) scattered
modes. But, clearly, our approach could be extended to
ITE modes, and to any desired order of approximation,
at least in principle.

V. DISCUSSION

The zeroth-order assumption n| = mL = ng ignores
the effects of refraction at the core-cladding interface.
For a weakly guiding fiber it is appropriate to neglect
refraction—except at grazing angles, when 6, <« 1 [24].
But the factor sin®f, in (42) suppresses grazing-angle
contributions to the scattered power, so we expect the
zeroth-order approximation to be rather good. This is
confirmed by the first-order result, which reveals that
grazing-angle scattering is suppressed even more strongly
than sin®6,.

The form of the expression for attenuation length (44)
admits physical interpretation. The ubiquitous factor k*
is Rayleigh’s law [26]. The ratio P.,/P is the fraction
of total guided power carried in the core. As W in-
creases from 0 to 2.405, this ratio increases from 0 to
about 0.8 [24]. The fact that p is inversely proportional
to the fraction of power in the core is reasonable, since,
in our fiber model, only the power in the core is suscepti-
ble to scattering. The fact that u is directly proportional
to v is also reasonable, since v = K;/K characterizes
the elastic stiffness of the system, and stiff systems re-
sist thermal fluctuations. Since v goes as the degree of
polymerization, so does the attenuation length.

We can make an order-of-magnitude estimate of the
1/e attenuation length p. Let R ~ 107® m, K ~ 10711
Jm~1[23],e,~0.1,n~ 1.5, and T ~ 4 x 10721 J, and
take koR ~ 2m. Then kR = koR/n ~ 4, B(koR) ~ 0.004
(see Fig. 3), and (43) gives

-1
pw~02y (Pm) m. (55)

P

If the degree of polymerization is large (y > 1), and
if most of the light is carried in the core (Pyo/P ~ 1),
then the 1/e attenuation length is of the order of 1 m
or more. This is an encouraging result, at least from
the standpoint of using fibers with Sm-C LCP cores for
special-purpose applications.

There are, of course, other scattering mechanisms in
optical fibers besides thermal fluctuations of the core
refractive index. Another fundamental loss mechanism
is that due to thermal fluctuations of the core-cladding
interface. This mechanism is briefly discussed in Ap-
pendix B, where we estimate the corresponding 1/e at-
tenuation length to be much greater than 10 m. So,
this loss mechanism is negligible compared to thermal
fluctuations of the core refractive index.

Material inhomogeneities, core-cladding interface ir-
regularities, bending, and so forth, all contribute to
losses. But, in principle, these losses can be made neg-
ligible. Scattering due to thermal fluctuations is funda-
mental, and represents the dominant loss mechanism in
a well-fabricated fiber.
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APPENDIX A: UNBOUND MODES

The unbound modes of a step-index fiber are derived
by Snyder [28] for the case of a nonbirefringent core. Here
we extend his analysis to the case of a birefringent core.
The reader is referred to [28] and [29] for additional de-
tails.

1. Fields in the core

We write the electric and magnetic fields in the form

E(p, ¢) einz~—1:wt ,
H(p, ¢) eznz—zwt ,

(A1)

and solve Maxwell’s equations in cylindrical coordinates.
Due to the cylindrical symmetry of the fiber (transla-
tion and rotation invariance with respect to %), the z
components of E and H satisfy ordinary wave equations.
Substituting from (A1) gives, inside the core,

9%E, 10E, 1 8%°E, 72U?

_ R —_—, = 0 . A2
0% Tpop Thog TR (42)
8%H, 18H, lasz + U2H —0
9> " p Op  p? 2 " R2TC T

where k£ = w/c is the vacuum wave number of the light,
n) and n, are the longitudinal and transverse refractive
indices of the core, n = m)|/n is a birefringence param-

eter, and
U=Ry\/n2k? k2.

(A3)
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The solutions of (A2) that remain finite as p — 0 are

Ez (pa ¢) =ay Jm(’lUP/R) ?im¢ )
H.(p,¢) = az Jn(Up/R) e'me )

where J,,, is the Bessel function of the first kind, m (an
integer) is the azimuthal quantum number (denoted m,
in the text), and a; and a; are constants. The remaining
field components in the core can be calculated from FE,
and H, [29]:

(A4)

E, R? OF, N k 6H,
=z \"8p T oe
= iaanR J! (nUp/R) &™®
kR?*m
U?p
R ( 8H, kni OE,
H"_ZW<KBP p 3¢>

= iaz%J,'n(Up/R) eime

Jm(Up/R) &™?

—as

kR?*n?2m
U*ij (nUp/R) ™,

_ R (kOB o,
=vz\, 96 "o

- _iaZ.’fUBJ;n(Up/R) eims
kR?m
Uz?p

. x OH, 5 OF,
H¢——( TS + kn? Bp)

. nkRn% im
iay nTlJm(ﬂUP/R) e'm?

+a,1

Jm(nUp/R) ™,

—aq

Il

kR?*m

%, Jn(Up/R) ™ .

(A5)

—as

2. Fields in the cladding

In the cladding, the components E, and H, are given
by

8%E 10FE 1 8%E V2

il BRSNS AR ) A6
0p2  p Op = p? O¢? T R (A6)
O0’H, +16Hz+_1_62H,+V_2H —0

9%  p dp  p? 8¢2  R2ZTC 7V

where n; is the refractive index of the cladding, and

V = Ry/n?k? — k2. (AT)
The solutions of (A6) are
E.(p,$) = a3 Ju(Vp/R) ™ (A8)

+as HY(Vp/R) ™
H.(p,¢) = as Jm(Vp/R) e™?
+ae Hr(rp (Vp/R) e,
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where H},} ) is the Hankel function of the first kind, and
as, a4, as, and ag are constants. The remaining field
components in the cladding are

5 _ B ( OB,  koH,
=i \"8p T p o¢

= ia3 7R J!.(Vp/R) e™®

Jm(Vp/R) e™?

R .
+ia4%H,(,})l(Vp/R) eimé

kR?>m )
2, H)(Vp/R)e™?,

.R? (n 0H, kn? 8Ez)
i— — =z

Op p 09
= ms—RJ’ (Vp/R) '™

kR nim
V2p

ias T HY'(Vp/ R) ¢

—ag

+as Jm(Vp/R) e™?

kR? nclm
VZip

E —iR—2 (EBEZ 8H)
¢ V2 \p 9¢ dp

= ——zasﬁﬁJ' (Vp/R) ™9

nRz
VZ2p

kR ! im
VHS) (Vp/R)e™®
rszm

taq HY(Vp/R) ™,

Jm(V p/R) ™

—ag

—’l:(Le

THD(Vp/R) e

_ KBH , OF,
R ey
=ia ki:;ldJ’ (Vp/R) ™

kR?
I vy

—ay

+ia4]j~%Hg)l(Vp/R) eime

kR*m
—ag Ve,

HM(Vp/R)ei™? .

3. Boundary conditions

At the core-cladding interface (p = R) we impose the
usual boundary conditions: the tangential components
of E and H, and the normal components of D and B
(the electric displacement and magnetic induction), must
be continuous. Two of these six conditions turn out to
be redundant; it is sufficient to impose continuity only
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on the four tangential components E,, H,, E4, and Hy.
Thus we have four boundary conditions and six unknown
constants (ai,...,ag). One of these constants may be
chosen arbitrarily, to set the overall intensity of the elec-
tromagnetic field. So we actually have five independent
constants, and four boundary conditions. One more con-
dition is needed.

Snyder provides this extra condition in the following
way. He divides the unbound modes into two classes:
ITM and ITE. The ITM (incident transverse magnetic)
modes have a5 = 0 as the extra condition, and the ITE
(incident transverse electric) modes have az = 0 as the
extra condition. See [28] for a detailed discussion of ITM
and ITE modes, and motivation of the terminology.

4. ITM modes

Combining the boundary conditions with the extra
condition a5 = 0 gives a linear set of five equations in
five unknowns, with the solution

az _ .kmO; Jn(nU)

a1 k@, Jn(U)
ag _ V@z(’:)z - m20,0, Im(nU)
ai 92@3 Jm(V) ’
% _ 1— V®2é2 —_ mz@lél Jm('ﬂU)
ay ©,0; H,(,f)(V) ’
s _
a;
Qg _ ‘nm@l Jm(nU)
o = i %0, H,(r})(U) ) (A10)
where
1 1
1=z~ vee
2
~ ng 1 1
Q1= Ve
o _ InU) _ HY'(V)
2T U0 vEDOW)
n? ’ H(l)l 1%
6, " _Jn) _ HY'W)
nAnU Jm(nU) v B (V)
!
Jv)y HY(v)
= -7 - . All
%= 7.7 HY (V) (A11)
In the limit n = ny = nq, we find az/a; = 1, with all

other constants zero. If the core birefringence is small
and the fiber is weakly guiding, we expect |ag/a;| ~ 1,
las/a1| = 0, and |az/a1], |es/a1], |as/a1| < 1, which im-
plies |E.| > |H,| in the core [see (A4)]; so the ITM
modes couple strongly to the bound mode [see the dis-
cussion preceding (50)].

5. ITE modes

Combining the boundary conditions with the extra
condition a3z = 0 gives a linear set of five equations in
five unknowns, with the solution

a; _ _ikmél I (U)
az K0z Jm(nU)’
a _ g
a2
as _ _ikm(:)l I (U)
o2 " nBs BP0
a5 _ 1,920z — m?©,6; Ju (V)
az (:)2@3 Jm(V) ’
2 2o &
a6 _ (4 _ V@zez~ m*0;0, J,,;(U) ) (A12)
az 9:0; H,(n)(V)
In the limit 7| = ny = ng, we find as/az; = 1, with all

other constants zero. If the core birefringence is small
and the fiber is weakly guiding, we expect |as/az| ~ 1,
laz/az] = 0, and |ai/az|, |as/azl,|as/az| < 1, which im-
plies |H,| > |E.| in the core [see (A4)]; so the ITE modes
couple weakly to the bound mode.

6. Normalization

In this paper we assume the core birefringence is small
and the fiber is weakly guiding, so we neglect ITE modes.
The unbound modes |E,) of the text are ITM modes. For
the remainder of this Appendix we consider only ITM
modes, and, for convenience, take a; = 1. Then, in the
core,

z2-E,(r) = Jn(nUp/R) ™ &= . (A13)

This is Eq. (50) of the text.
Our final task is to calculate the normalization integral

(E|D) = /drE* ‘D
R
= 27TL/ dpp(nilEplz + nﬁlEqslz + nmEZIZ)
0

R
vty [ m@wuwmﬂaﬂ-
(A14)

In the limit R, — oo the contribution from the core
becomes negligible, and we can write

Roo
®D) = ortndy [ dop(15,2 41847 + |EF)
(A15)

where the field components are those of the cladding.
Consider the E, integral. In the limit R,, = oo

R 2 R4 VR /R
dpplE,|? = & d
A ppl P] V4 A o

x[a3 JL, () + aj HO ()]
x[az T, (@) + as HY' ()]
k2R3R.,

- —7573__("13 + aq|® + |a4]?),

(A16)
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where we have used the results

VR
mR ’

VRe/R
/ daa ! () I, (a) =
1

VRe /R , VR
,/1 daaJ! (o) HY (a) = R
VR /R I , VR
doaa HY HY (o) = ===
[ deam®" @B (@ = 23

The E4 and E, integrals can be evaluated in a similar
fashion, giving

R 2R3
e 2k*R°R
2 __ o0 2

[ aoolmol = Zi2 el (a17)

R

o RR
/ dp p|E.|? = (las + aal? + laa]?) . (A18)
R 7TV

Combining these results and using the relation x =
nak cosf, gives

2LR o 2|ag|?
ED) = =—=d 2 2, 2%l )
(E|D) b sin’0, (la3+a4| + |aq|® + n,

(A19)

If the core birefringence is small and the fiber is weakly
guiding, then a3 ~ 1 and |a4|, |as| < 1, so

ZLRooncl

ED) ~ —————.
(E[D) k sin36,

(A20)

This is Eq. (48) of the text.

APPENDIX B: CORE-CLADDING INTERFACE
FLUCTUATIONS

In this appendix we consider scattering due to ther-
mal fluctuations of the core-cladding interface, and make
an order-of-magnitude estimate of the 1/e attenuation
length p; due to these fluctuations. Following Mar-
cuse [24] we represent the locus of the interface by

p($,z) = R + €(z) cos(mg),

where p is the radial coordinate of the interface, ¢ and
z are the usual cylindrical coordinates, R is the mean
core radius, and € is a small perturbation. The integer

(B1)
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m determines the type of interface distortion: m = 0 for
radius fluctuations, m = 1 for bends, m = 2 for elliptical
profile distortions, and so forth. Here we confine our
attention to the m = 0 mode, so that

p(¢,2) = R+ €(z).

We model the free energy of the core-cladding interface

by
F;, = ‘/;Ldz {g(p—R)z +7lp (gg)z} , (B3)

where L is the length of the fiber, B is the bulk modulus of
elasticity (assumed the same for the core and cladding),
and I is the interface surface tension. A calculation anal-
ogous to that in Secs. IT and IIT (but much simpler) gives
the spatial correlation function

(B2)

(e(2)e(z')) = o? e7I=== 1P (B4)
where
T
o? = 38D (B5)
is the variance, and
D= 2"§F (B6)

is the correlation length. For correlation functions of
this form, and for typical step-index, single-mode, weakly
guiding fibers, Marcuse [24] shows that

3
pio? <1 (BT)
which implies
R
i > T\/SW(BR3)(I‘R2) . (B®)

Marcuse also shows that scattering due to the m = 1 and
m = 2 modes is of the same order of magnitude as for
the m = 0 mode. High-order modes are suppressed by
the surface tension term of the free energy, so (B8) is a
reasonable order-of-magnitude estimate of ;. With the
typical values R ~ 1078 m, T~ 4 x 1072 J, T' ~ 1072
Jm~2 [30,31], and B ~ 10!° Jm~3, we find y; > 10* m.
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